
JavaScript Asynchronous
programming

Definition
SetTimeout 

Ajax
Promises

Async/Await

Asynchronous programming
• Generally programs are executed line by line . So only when line

1 is complete , will execution move to line 2. Thus line 1’s
execution blocks line 2’s execution.

• General programs are synchronous in nature .

• Asynchronous programming means code will be executed at a
later “time” or “event”. Subsequent code’s execution doesn’t
have to wait .

• Ordering in restaurant with token system is a real-life example of
asynchronous execution. It is non-blocking.

• Example: setTimeout function, Ajax requests

Asynchronous programming
example - setTimeout

• Functions running in parallel with other functions are
called asynchronous  

Console.log(1);
function myFunction() {
 console.log(2);
}  

setTimeout(myFunction, 3000);
 
console.log(3);  

• myFunction in above example is a callback function 

Definition - Callback

• A callback is a function passed as an argument to
another function

• This technique allows a function to call another
function

• A callback function can run after another function
has finished

Blocking code
• We add a click event listener to a button so that when clicked,

it runs a time-consuming operation (calculates 10 million dates
then logs the final one to the console) and then adds a
paragraph to the DOM: https://mdn.github.io/learning-area/
javascript/asynchronous/introducing/simple-sync.html

• https://mdn.github.io/learning-area/javascript/asynchronous/
introducing/simple-sync-ui-blocking.html

• We block user interactivity with the rendering of the UI. The first
operation blocks the second one until it has finished running.

• In this block, the lines are executed one after the other:

https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync-ui-blocking.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync-ui-blocking.html

Async programming
example - Ajax

• https://www.w3schools.com/js/tryit.asp?filename=tryjs_callback7

function myDisplayer(some) {
 document.getElementById("demo").innerHTML = some;
}

function getFile(myCallback) {
 let req = new XMLHttpRequest();
 req.open('GET', "mycar.html");
 req.onload = function() {
 if (req.status == 200) {
 myCallback(this.responseText);
 } else {
 myCallback("Error: " + req.status);
 }
 }
 req.send();
}

getFile(myDisplayer);  

https://www.w3schools.com/js/tryit.asp?filename=tryjs_callback7

Promises
• Promise object represents the eventual

completion (or failure) of an asynchronous
operation and its resulting value.  

Promises
• A Javascript promise can be fulfilled, rejected, or pending

• While a Promise object is "pending" (working), the result is
undefined.

• When a Promise object is "fulfilled", the result is a value.

• When a Promise object is "rejected", the result is an error
object.

• Example: https://www.w3schools.com/js/tryit.asp?
filename=tryjs_promise2

https://www.w3schools.com/js/tryit.asp?filename=tryjs_promise2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_promise2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_promise2

Promises

• Convert callback to promise

setTimeout(function() { myFunction(“hello
world!!!"); }, 3000);

function myFunction(value) {
 document.getElementById("demo").innerHTML = value;
}

Async/Await

• "async and await make promises easier to write” -
syntactic sugar

• async makes a function return a Promise

• await makes a function wait for a Promise. You
don’t need the `.then()` syntax

