JavaScript Asynchronous
programming

Definition
SetTimeout
Ajax
Promises
Async/Await

Asynchronous programming

* Generally programs are executed line by line . So only when line
1 1s complete , will execution move to line 2. Thus line 1's
execution blocks line 2's execution.

 GGeneral programs are synchronous in nature .

* Asynchronous programming means code will be executed at a
later “time” or “event”. Subsequent code’s execution doesn’t
have to walit .

« Ordering in restaurant with token system is a real-life example of
asynchronous execution. It is non-blocking.

o Example: setTimeout function, Ajax requests

Asyncnhronous programming
example - setlimeout

e Functions running in parallel with other tunctions are
called asynchronous

Console.log(1l) ;
function myFunction () {
console.log(2) ;

}

setTimeout (myFunction, 3000);

console.log(3) ;

e mykFunction in above example is a callback function

Definition - Callback

* A callback is a function passed as an argument to
another function

* This technique allows a function to call another
function

e A callback function can run after another function
has finished

Blocking code

We add a click event listener to a button so that when clicked,
it runs a time-consuming operation (calculates 10 million dates
then logs the final one to the console) and then adds a

paragraph to the DOM: https://mdn.qgithub.io/learning-area/
javascript/asynchronous/introducing/simple-sync.html

hitps://mdn.qgithub.io/learning-area/javascript/asynchronous/
introducing/simple-sync-ui-blocking.htm|

We block user interactivity with the rendering of the Ul. The first
operation blocks the second one until it has finished running.

In this block, the lines are executed one after the other:

https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync-ui-blocking.html
https://mdn.github.io/learning-area/javascript/asynchronous/introducing/simple-sync-ui-blocking.html

AsSync programming
example - Ajax

 https://www.w3schools.com/js/tryit.asp?filename=tryjs callback?

function myDisplayer (some) {
document.getElementById("demo") .innerHTML = some;

}

function getFile (myCallback) ({
let req = new XMLHttpRequest() ;
reg.open('GET', "mycar.html");
reqg.onload = function() {
if (reqg.status == 200) {
myCallback (this.responseText) ;
} else {
myCallback ("Error: " + req.status);

}
}

reqg.send() ;

}

getFile (myDisplayer) ;

https://www.w3schools.com/js/tryit.asp?filename=tryjs_callback7

Promises

* Promise ODbject represents the eventual
completion (or failure) of an asynchronous
operation and its resulting value.

RESOLVED

PENDING then()

T -

REJECTED

Promise

Promises

A Javascript promise can be fulfilled, rejected, or pending

While a Promise object is "pending" (working), the result is
undefined.

When a Promise object is "fulfilled”, the result is a value.

When a Promise object is "rejected’, the result is an error
object.

Example: https://www.w3schools.com/js/tryit.asp?
filename=tryjs promise?

https://www.w3schools.com/js/tryit.asp?filename=tryjs_promise2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_promise2
https://www.w3schools.com/js/tryit.asp?filename=tryjs_promise2

Promises

* Convert callback to promise

setTimeout(function() { myFunction(“hello
world!!!"); }, 3000);

function myFunction(value) {
document.getElementById("demo").innerHTML = value;

}

Async/Await

‘async and await make promises easier to write” -
syntactic sugar

async makes a function return a Promise

await makes a function wait for a Promise. You
don’t need the ".then() syntax

