
JavaScript Functions
Definition
Invocation
Arguments

Scope
Anonymous Functions

Closures

Functions
• Functions are the fundamental modular unit of JavaScript.

• Function objects are linked to Function.prototype
(which is itself linked to Object.prototype).

• Functions can be stored in variables, objects, and arrays.
Functions can be passed as arguments to functions, and
functions can be returned from functions.

• function(a){…} —> define

• function() —> call

Function Literal

• Functions can be created using Literals

• var add = function (a, b) { return a + b;}

• A function literal can appear anywhere that an
expression can appear.

Function Invocation

• There are four patterns of invocation in JavaScript:
the method invocation pattern, the function
invocation pattern, the constructor invocation
pattern, and the apply invocation pattern

Method Invocation
• When a function is stored as a property of an

object , it is called a method  

var myObject = {
 value: 0;
 increment: function (inc) {
 this.value += typeof inc ===
'number' ? inc : 1;
} };

myObject.increment();

Function Invocation

• When a function is not the property of an object,
then it is invoked as a function:

function add(a,b){return a+b}  
var sum = add(3, 4); // sum is 7

Constructor Invocation
• Functions that are intended to be used with the new prefix are

called constructors.  

var Quo = function (string) {
 this.status = string;
};

// Give all instances of Quo a public method
// called get_status.
Quo.prototype.get_status = function () {
 return this.status;
};
// Make an instance of Quo.
var myQuo = new Quo("confused");

Arguments
• A bonus parameter that is available to functions when they are

invoked is the arguments array.

• arguments is not really an array. It is an array-like object.
arguments has a length property, but it lacks all of the array
methods.  

var sum = function () {
 var i, sum = 0;
 for (i = 0; i < arguments.length; i += 1) {
 sum += arguments[i];
}

 return sum;
};

Scope
• Variables defined inside a function cannot be accessed from

anywhere outside the function(Function scope), because the
variable is defined only in the scope of the function.

• a = 5 ;  
function(){b=5 ; console.log(a)};  
b ;

• Function defined in the global scope can access all variables
defined in the global scope.

• A function defined inside another function can also access all
variables defined in its parent function, and any other variables
to which the parent function has access.

Anonymous Functions

• Such a function can be anonymous; it does not
have to have a name.

• const square = function(number) { return number *
number }

 var x = square(4) // x gets the value 16

Nested Function & Closures
• You may nest a function within another function. The nested

(inner) function is private to its containing (outer) function.

• It also forms a closure. A closure is the combination of a
function and the lexical environment within which that
function was declared. This environment consists of any
local variables that were in-scope at the time the closure
was created.

• Since a nested function is a closure, this means that a
nested function can "inherit" the arguments and variables of
its containing function. In other words, the inner function
contains the scope of the outer function.

Nikhil Singh

• The inner function can be accessed only from statements in the outer
function.

• The inner function forms a closure: the inner function can use the
arguments and variables of the outer function

• while the outer function cannot use the arguments and variables of the
inner function.

Example Closure

• In essence, makeAdder is a function factory. It creates functions that
can add a specific value to their argument. In the above example,
the function factory creates two new functions—one that adds
five to its argument, and one that adds 10.

• add5 and add10 are both closures. They share the same function
body definition, but store different lexical environments. In add5's
lexical environment, x is 5, while in the lexical environment
for add10, x is 10.

Example Closure
function makeAdder(x) {

 return function(y) {
 return x + y;

 };
}

var add5 = makeAdder(5);
var add10 = makeAdder(10);

console.log(add5(2)); // 7
console.log(add10(2)); // 12

