JavaScript Functions

Definition
Invocation
Arguments

Scope
Anonymous Functions
Closures

Functions

Functions are the fundamental modular unit of Javascript.

Function objects are linked to Function.prototype
(which is itself linked to Object.prototype).

—unctions can be stored in variables, objects, and arrays.
—unctions can be passed as arguments to functions, and
functions can be returned from functions.

function(a){...} —> define

function() —> call

Function Literal

* Functions can be created using Literals
e var add = function (a, b) { return a + b;}

* A function literal can appear anywhere that an
expression can appear.

Function Invocation

* There are four patterns of invocation in JavaScript:
the method invocation pattern, the function

iInvocation pattern, the constructor invocation
pattern, and the apply invocation pattern

Method Invocation

* \When a function is stored as a property of an
object , it Is called a method

var myObject = {
value: 0;
increment: function (inc) {
this.value += typeof inc ===
'number’' ? inc : 1;

|

myObject.increment();

Function Invocation

* When a function is not the property of an object,
then it is invoked as a function:

function add(a,b){return a+b}
var sum = add(3, 4); // sum 1is 7

Constructor Invocation

* Functions that are intended to be used with the new prefix are
called constructors.

var Quo = function (string) {
this.status = string;
}i
// Give all instances of Quo a public method
// called get status.
Quo.prototype.get status = function () {
return this.status;
}i
// Make an instance of Quo.
var myQuo = new Quo('"confused");

Arguments

* A bonus parameter that is available to functions when they are
iInvoked Is the arguments array.

e arguments IS not really an array. It is an array-like object.

arguments has a length property, but it lacks all of the array
methods.

var sum = function () {
var 1, sum = 0;
for (1 = 0; 1 < arguments.length; 1 += 1) {
sum += arguments[i];

return sum;

| ¥

Scope

e Variables defined inside a function cannot be accessed from
anywhere outside the function(Function scope), because the
variable is defined only in the scope of the function.

* a=9;
function(){b=5 ; console.log(a)};
o ;

* Function defined in the global scope can access all variables
defined in the global scope.

* A function defined inside another function can also access all
variables defined in its parent function, and any other variables
to which the parent function has access.

ANoONymMous Functions

* Such a function can be anonymous; it does not
have to have a name.

e const square = function(number) | return number *
number

var x = square(4) // x gets the value 16

Nested Function & Closures

* You may nest a function within another function. The nested
(inner) function is private to its containing (outer) function.

e |t also forms a closure. A closure is the combination of a
function and the lexical environment within which that
function was declared. This environment consists of any

ocal variables that were in-scope at the time the closure
was created.

e Since a nested function is a closure, this means that a
nested function can "inherit" the arguments and variables of

its containing function.

Nikhil Singh

Example Closure

function addSquares(a, b
function square(x
return x * Xx;

return square(a) + square(b
= addSquares(2, 3); // returns 13

= addSquares(3, 4); // returns 25
¢ = addSquares(4, 5); // returns 41

o o -

* The inner function can be accessed only from statements in the outer
function.

* The inner function forms a closure: the inner function can use the
arguments and variables of the outer function

« while the outer function cannot use the arguments and variables of the
inner function.

Example Closure

function makeAdder(x) {
return function(y) {
return X +;
¥
J

var add5 = makeAdder(5);
var add10 = makeAdder(10);

console.log(add5(2)); /I 7
console.log(add10(2)); // 12

* In essence, makeAdder is a function factory. It creates functions that
can add a specific value to their argument. In the above example,
the function factory creates two new functions—one that adds
five to its argument, and one that adds 10.

e add5 and add10 are both closures. They share the same function
body definition, but store different lexical environments. In add5's
lexical environment, x is 5, while in the lexical environment
for add10, xis 10.

