
Objects & OOPS in
Javascript

Object properties

Object Literals 

OOPS in Javascript

Constructor Functions

Inheritance

Objects in Javascript
• The simple types of JavaScript are numbers, strings, booleans (true

and false), null, and undefined. All other values are objects.

• Objects in JavaScript are mutable keyed collections. In JavaScript,
arrays are objects, functions are objects, regular expressions are
objects, and, of course, objects are objects.

• An object is a container of properties, where a property has a name
and a value. A property name can be any string, including the empty
string.

• Property value can be static or dynamic which are functions(methods) 

• Example {Car_Obj —> name: Honda, year: 2018, age: currentyr-2018} 

Object Literals
• Object literals provide a convenient notation for creating new object values.  

var flight = {

 airline: "Oceanic",

 number: 815,

 departure: {

 IATA: "SYD",

 time: "2004-09-22 14:55",

 city: "Sydney"

}, arrival: {
 IATA: "LAX",

 time: "2004-09-23 10:42",

 city: "Los Angeles"

}, name_number: function(){return this.airline +
this.number}  
};

Object Literals

• Updating property value can be done with simple assignment  

• A property's name can be any string, including the empty string. The
quotes around a property's name in an object literal are optional if the
name would be a legal JavaScript name and not a reserved word.  

• dot operator can be used to retrieve properties 

• “undefined” is produced when property doesn’t exist

• "

 

OOPs/OOJs in Javascript

• JavaScript has a class-free object system[classes
introduced in ECMA 2015] in which objects inherit
properties directly from other objects.

• Every object is linked to a prototype object from which
it can inherit properties. All objects created from
object literals are linked to Object.prototype, an object
that comes standard with JavaScript. 

• Functions in JavaScript are objects. Thus they can
have methods

Constructor Function = Class

  
 
function Person(name) {

 this.name=name;
 this.greeting = function() {
 alert('Hi! I\'m ' + this.name + '.');
 };
}
Person1 = new Person(“john”);

JavaScript uses special functions called constructor
functions to define and initialise objects and their features.

Classes and Inheritance

  
 
class Car {

 constructor(brand) {

 this.carname = brand;

 }

 present() {

 return 'I have a ' + this.carname;

 }

}

class Model extends Car {

 constructor(brand, mod) {

 super(brand);

 this.model = mod;

 }

 show() {

 return this.present() + ', it is a ' + this.model;

 }

}

“extends” keyword can help us create a sub-class of a parent class.

Problem
function Shape(name, sides, sideLength) {

 this.name = name;

 this.sides = sides;

 this.sideLength = sideLength;

} 
 
// 
Add a new method to the Shape class's prototype, calcPerimeter(), which
calculates its perimeter (the length of the shape's outer edge) and logs the
result to the console.

Create a new instance of the Shape class called square. Give it a name of
square and a sideLength of 5.

Call your calcPerimeter()

